3.298 \(\int \frac{x^2 (c+d x^3)^{3/2}}{8 c-d x^3} \, dx\)

Optimal. Leaf size=67 \[ \frac{18 c^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{d}-\frac{6 c \sqrt{c+d x^3}}{d}-\frac{2 \left (c+d x^3\right )^{3/2}}{9 d} \]

[Out]

(-6*c*Sqrt[c + d*x^3])/d - (2*(c + d*x^3)^(3/2))/(9*d) + (18*c^(3/2)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0569293, antiderivative size = 67, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {444, 50, 63, 206} \[ \frac{18 c^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{d}-\frac{6 c \sqrt{c+d x^3}}{d}-\frac{2 \left (c+d x^3\right )^{3/2}}{9 d} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(c + d*x^3)^(3/2))/(8*c - d*x^3),x]

[Out]

(-6*c*Sqrt[c + d*x^3])/d - (2*(c + d*x^3)^(3/2))/(9*d) + (18*c^(3/2)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/d

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^2 \left (c+d x^3\right )^{3/2}}{8 c-d x^3} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{(c+d x)^{3/2}}{8 c-d x} \, dx,x,x^3\right )\\ &=-\frac{2 \left (c+d x^3\right )^{3/2}}{9 d}+(3 c) \operatorname{Subst}\left (\int \frac{\sqrt{c+d x}}{8 c-d x} \, dx,x,x^3\right )\\ &=-\frac{6 c \sqrt{c+d x^3}}{d}-\frac{2 \left (c+d x^3\right )^{3/2}}{9 d}+\left (27 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{(8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )\\ &=-\frac{6 c \sqrt{c+d x^3}}{d}-\frac{2 \left (c+d x^3\right )^{3/2}}{9 d}+\frac{\left (54 c^2\right ) \operatorname{Subst}\left (\int \frac{1}{9 c-x^2} \, dx,x,\sqrt{c+d x^3}\right )}{d}\\ &=-\frac{6 c \sqrt{c+d x^3}}{d}-\frac{2 \left (c+d x^3\right )^{3/2}}{9 d}+\frac{18 c^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{d}\\ \end{align*}

Mathematica [A]  time = 0.034809, size = 58, normalized size = 0.87 \[ \frac{162 c^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )-2 \sqrt{c+d x^3} \left (28 c+d x^3\right )}{9 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(c + d*x^3)^(3/2))/(8*c - d*x^3),x]

[Out]

(-2*Sqrt[c + d*x^3]*(28*c + d*x^3) + 162*c^(3/2)*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(9*d)

________________________________________________________________________________________

Maple [C]  time = 0.01, size = 441, normalized size = 6.6 \begin{align*} -{\frac{2\,{x}^{3}}{9}\sqrt{d{x}^{3}+c}}-{\frac{56\,c}{9\,d}\sqrt{d{x}^{3}+c}}-{\frac{3\,ic\sqrt{2}}{{d}^{3}}\sum _{{\it \_alpha}={\it RootOf} \left ({{\it \_Z}}^{3}d-8\,c \right ) }{\sqrt [3]{-{d}^{2}c}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-{d}^{2}c}} \right ) \left ( -3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i\sqrt{3} \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-{d}^{2}c}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}},-{\frac{1}{18\,cd} \left ( 2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c} \left ( -{\frac{3}{2\,d}\sqrt [3]{-{d}^{2}c}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(d*x^3+c)^(3/2)/(-d*x^3+8*c),x)

[Out]

-2/9*x^3*(d*x^3+c)^(1/2)-56/9*c*(d*x^3+c)^(1/2)/d-3*I/d^3*c*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3
^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^
(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/
2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_
alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1
/2)*d/(-d^2*c)^(1/3))^(1/2),-1/18/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3
^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/c,(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d
*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d-8*c))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(d*x^3+c)^(3/2)/(-d*x^3+8*c),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.38863, size = 293, normalized size = 4.37 \begin{align*} \left [\frac{81 \, c^{\frac{3}{2}} \log \left (\frac{d x^{3} + 6 \, \sqrt{d x^{3} + c} \sqrt{c} + 10 \, c}{d x^{3} - 8 \, c}\right ) - 2 \,{\left (d x^{3} + 28 \, c\right )} \sqrt{d x^{3} + c}}{9 \, d}, -\frac{2 \,{\left (81 \, \sqrt{-c} c \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{3 \, c}\right ) +{\left (d x^{3} + 28 \, c\right )} \sqrt{d x^{3} + c}\right )}}{9 \, d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(d*x^3+c)^(3/2)/(-d*x^3+8*c),x, algorithm="fricas")

[Out]

[1/9*(81*c^(3/2)*log((d*x^3 + 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) - 2*(d*x^3 + 28*c)*sqrt(d*x^3 +
 c))/d, -2/9*(81*sqrt(-c)*c*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) + (d*x^3 + 28*c)*sqrt(d*x^3 + c))/d]

________________________________________________________________________________________

Sympy [A]  time = 28.1262, size = 65, normalized size = 0.97 \begin{align*} - \frac{18 c^{2} \operatorname{atan}{\left (\frac{\sqrt{c + d x^{3}}}{3 \sqrt{- c}} \right )}}{d \sqrt{- c}} - \frac{6 c \sqrt{c + d x^{3}}}{d} - \frac{2 \left (c + d x^{3}\right )^{\frac{3}{2}}}{9 d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(d*x**3+c)**(3/2)/(-d*x**3+8*c),x)

[Out]

-18*c**2*atan(sqrt(c + d*x**3)/(3*sqrt(-c)))/(d*sqrt(-c)) - 6*c*sqrt(c + d*x**3)/d - 2*(c + d*x**3)**(3/2)/(9*
d)

________________________________________________________________________________________

Giac [A]  time = 1.16134, size = 88, normalized size = 1.31 \begin{align*} -\frac{18 \, c^{2} \arctan \left (\frac{\sqrt{d x^{3} + c}}{3 \, \sqrt{-c}}\right )}{\sqrt{-c} d} - \frac{2 \,{\left ({\left (d x^{3} + c\right )}^{\frac{3}{2}} d^{2} + 27 \, \sqrt{d x^{3} + c} c d^{2}\right )}}{9 \, d^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(d*x^3+c)^(3/2)/(-d*x^3+8*c),x, algorithm="giac")

[Out]

-18*c^2*arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*d) - 2/9*((d*x^3 + c)^(3/2)*d^2 + 27*sqrt(d*x^3 + c)*c*
d^2)/d^3